
File Systems



Main Points

• File layout
• Directory layout



File System Design Constraints
• For small files:
– Small blocks for storage efficiency
– Files used together should be stored together

• For large files:
– Contiguous allocation for sequential access
– Efficient lookup for random access

• May not know at file creation
– Whether file will become small or large



File System Design

• Data structures
– Directories: file name -> file metadata
• Store directories as files

– File metadata: how to find file data blocks
– Free map: list of free disk blocks

• How do we organize these data structures?
– Device has non-uniform performance



Design Challenges
• Index structure
– How do we locate the blocks of a file?

• Index granularity
– What block size do we use?

• Free space
– How do we find unused blocks on disk?

• Locality
– How do we preserve spatial locality?

• Reliability
– What if machine crashes in middle of a file system op?



File System Design Options
FAT FFS NTFS

Index 
structure

Linked list Tree
(fixed, assym)

Tree
(dynamic)

granularity block block extent
free space
allocation

FAT array Bitmap
(fixed 

location)

Bitmap 
(file)

Locality defragmentation Block groups
+ reserve 

space

Extents
Best fit
defrag



Named Data in a File System



Microsoft File Allocation Table (FAT)

• Linked list index structure
– Simple, easy to implement
– Still widely used (e.g., thumb drives)

• File table:
– Linear map of all blocks on disk
– Each file a linked list of blocks



FAT



FAT
• Pros:
– Easy to find free block
– Easy to append to a file
– Easy to delete a file

• Cons:
– Small file access is slow
– Random access is very slow
– Fragmentation

• File blocks for a given file may be scattered
• Files in the same directory may be scattered
• Problem becomes worse as disk is used



Berkeley UNIX FFS (Fast File System)

• inode table
– (very roughly) Analogous to FAT table

• inode
– Metadata
• File owner, access permissions, access times, …

– Set of 12 data pointers
– With 4KB blocks => max size of 48KB files



FFS inode

• Metadata
– File owner, access permissions, access times, …

• Set of 12 data pointers
– With 4KB blocks => max size of 48KB files

• Indirect block pointer
– pointer to disk block of data pointers

• Indirect block: 1K data blocks => 4MB (+48KB)



FFS inode
• Metadata
– File owner, access permissions, access times, …

• Set of 12 data pointers
– With 4KB blocks => max size of 48KB

• Indirect block pointer
– pointer to disk block of data pointers
– 4KB block size => 1K data blocks => 4MB

• Doubly indirect block pointer
– Doubly indirect block => 1K indirect blocks
– 4GB (+ 4MB + 48KB)



FFS inode
• Metadata
– File owner, access permissions, access times, …

• Set of 12 data pointers
– With 4KB blocks => max size of 48KB

• Indirect block pointer
– pointer to disk block of data pointers
– 4KB block size => 1K data blocks => 4MB

• Doubly indirect block pointer
– Doubly indirect block => 1K indirect blocks
– 4GB (+ 4MB + 48KB)

• Triply indirect block pointer
– Triply indirect block => 1K doubly indirect blocks
– 4TB (+ 4GB + 4MB + 48KB)





FFS Asymmetric Tree

• Small files: shallow tree
– Efficient storage for small files

• Large files: deep tree
– Efficient lookup for random access in large files

• Sparse files: only fill pointers if needed



FFS Locality

• Block group allocation
– Block group is a set of nearby cylinders
– Files in same directory located in same group
– Subdirectories located in different block groups

• inode table spread throughout disk
– inodes, bitmap near file blocks

• First fit allocation
– Small files fragmented, large files contiguous 





FFS First Fit Block Allocation



FFS First Fit Block Allocation



FFS First Fit Block Allocation



FFS
• Pros
– Efficient storage for both small and large files
– Locality for both small and large files
– Locality for metadata and data

• Cons
– Inefficient for tiny files (a 1 byte file requires both an 

inode and a data block)
– Inefficient encoding when file is mostly contiguous on 

disk (no equivalent to superpages)
– Need to reserve 10-20% of free space to prevent 

fragmentation



NTFS

• Master File Table
– Flexible 1KB storage for metadata and data

• Extents
– Block pointers cover runs of blocks
– Similar approach in linux (ext4)
– File create can provide hint as to size of file

• Journalling for reliability
– Next chapter



NTFS Small File



NTFS Medium-Sized File



NTFS Indirect Block





Named Data in a File System



Directories Are Files



Recursive Filename Lookup



Directory Layout

Directory stored as a file
Linear search to find filename (small directories)



Large Directories: B Trees



Large Directories: Layout


