File Systems

Main Points

* File layout
* Directory layout

File System Design Constraints

* For small files:
— Small blocks for storage efficiency
— Files used together should be stored together

* For large files:
— Contiguous allocation for sequential access
— Efficient lookup for random access

 May not know at file creation

— Whether file will become small or large

File System Design

 Data structures
— Directories: file name -> file metadata

* Store directories as files
— File metadata: how to find file data blocks
— Free map: list of free disk blocks
* How do we organize these data structures?

— Device has non-uniform performance

Design Challenges

Index structure
— How do we locate the blocks of a file?

Index granularity
— What block size do we use?

Free space

— How do we find unused blocks on disk?

Locality

— How do we preserve spatial locality?

Reliability

— What if machine crashes in middle of a file system op?

File System Design Options

FAT FFS NTFS
Index Linked list Tree Tree
structure (fixed, assym) (dynamic)
granularity block block extent
free space FAT array Bitmap Bitmap
allocation (fixed (file)
location)
Locality | defragmentation| Block groups Extents
+ reserve Best fit
space defrag

Named Data in a File System

index

file name directory filenumber Structure storage
' >
offset offset block

Microsoft File Allocation Table (FAT)

* Linked list index structure

— Simple, easy to implement

— Still widely used (e.g., thumb drives)
* File table:

— Linear map of all blocks on disk
— Each file a linked list of blocks

FAT

Data Blocks

file 9 block 3

ATA]

=hI=h=hi=h|
;
O E
m
N
(=]

file 12 block 1

file 9 block 4

owvooNO LA WN=OWVWONOLAWN=O

N—I—i—l—i—i—l—i—i—l—l

FAT

* Pros:
— Easy to find free block
— Easy to append to a file
— Easy to delete a file

* Cons:
— Small file access is slow
— Random access is very slow

— Fragmentation
* File blocks for a given file may be scattered
* Files in the same directory may be scattered
* Problem becomes worse as disk is used

Berkeley UNIX FFS (Fast File System)

* inode table
— (very roughly) Analogous to FAT table

* inode
— Metadata

* File owner, access permissions, access times, ...
— Set of 12 data pointers
— With 4KB blocks => max size of 48KB files

FFS inode

Metadata

— File owner, access permissions, access times, ...

Set of 12 data pointers
— With 4KB blocks => max size of 48KB files

Indirect block pointer

— pointer to disk block of data pointers
Indirect block: 1K data blocks => 4MB (+48KB)

FFS inode

Metadata

— File owner, access permissions, access times, ...

Set of 12 data pointers
— With 4KB blocks => max size of 48KB

Indirect block pointer

— pointer to disk block of data pointers

— 4KB block size => 1K data blocks => 4MB
Doubly indirect block pointer

— Doubly indirect block => 1K indirect blocks
— 4GB (+ 4MB + 48KB)

FFS inode

Metadata
— File owner, access permissions, access times, ...
Set of 12 data pointers
— With 4KB blocks => max size of 48KB
Indirect block pointer
— pointer to disk block of data pointers
— 4KB block size => 1K data blocks => 4MB
Doubly indirect block pointer
— Doubly indirect block => 1K indirect blocks
— 4GB (+ 4MB + 48KB)
Triply indirect block pointer
— Triply indirect block => 1K doubly indirect blocks
— 4TB (+ 4GB + 4MB + 48KB)

Inode Array

Inode

Triple Double

Indirect Indkrect
Blocks Blocks

File Maladata

Direct Paister

oP

........

TEREEREEE

ndract Paindar

Direct Frinter |

Ob. ndirect Pir. §-oooiiiis

P L

.....

Indirect Data
Blocks Blocks

......

FFS Asymmetric Tree

* Small files: shallow tree
— Efficient storage for small files

* Large files: deep tree

— Efficient lookup for random access in large files

e Sparse files: only fill pointers if needed

FFS Locality

* Block group allocation
— Block group is a set of nearby cylinders
— Files in same directory located in same group
— Subdirectories located in different block groups

* inode table spread throughout disk

— inodes, bitmap near file blocks

e First fit allocation

— Small files fragmented, large files contiguous

Block Group 0

Block Group 1

Block Group 2

FFS First Fit Block Allocation

In-Use Free
Start of Block Block

Block [TT T T TTTTT]ee
Group

FFS First Fit Block Allocation

Start of Write Two Block File

Block

Group

FFS First Fit Block Allocation

Start of Write Largf File

Block
Group

FFS

* Pros
— Efficient storage for both small and large files
— Locality for both small and large files
— Locality for metadata and data

e Cons

— Inefficient for tiny files (a 1 byte file requires both an
inode and a data block)

— Inefficient encoding when file is mostly contiguous on
disk (no equivalent to superpages)

— Need to reserve 10-20% of free space to prevent
fragmentation

NTFS

 Master File Table
— Flexible 1KB storage for metadata and data

* Extents

— Block pointers cover runs of blocks

— Similar approach in linux (ext4)

— File create can provide hint as to size of file
* Journalling for reliability

— Next chapter

Master File Table

NTFS Small File

MFT Record (small file)

Std. Info.

File Name

Data (resident)

(free)

MFT

NTFS Medium-Sized File

...

e

P | B

=

(& |m

| @ g
MFT Record
| Std. Info. | File Name | Data {nonresident) (free)
' s

o

|

3 |®

iz

|3

MFT

NTFS Indirect Block

MNE] BN

e |eg

[TWag meg

MFT Record
-{panﬂ HH H
| | Std. Info. | Atirlist | File Name | Data (nonresident) I
g
2 o
N [=
= R
S E 3 I
MFT Record
_{Dﬂﬂ 2)
_ Sta. Info.[Data (nonresident)] {frae) |

MFT

MFT Recara
(small file)

| st i,

Darta (residest)

MFT Record
(normal file)

| sta. 1.

Data francesidend)

I

MFT Record
(bigfragmented file

[

| 5t inta.

Atirist

Data (naneesident)

I

Data inarvesadent)

O]

0

Datla insre esadent)

07

0

Data Ingeesadent)

|] 0

.
'D
.
1
1

MFT

MFT Record
(huge/badly-fragmented file)

[s inte | A it jonrasigenty

Data (narvesident)

0

Data (narvesident)

e

i

Data (nanvesi dent)

Il

T

Data Insrv esadent)

7o

Dala Insrv esadent)

0y

i

Named Data in a File System

index

file name directory filenumber Structure storage
' >
offset offset block

Directories Are Files

music 320
work 219
fjoo.txt BT

Recursive Filename Lookup

oin 737

usr B24
nome 158

*Flle 158 | mike 682
“home” | ada 818
tom B30

*File 830 | music 320
“Thomefom” | work 219
foo.txt 8711

- FIIE 8?1 T+ au ll_w\

“ThomeftomMoo txt™ | bros fos

Directory Layout

Directory stored as a file
Linear search to find filename (small directories)

File 830

“homeltom”
Name : .. music | work foo.txl -
Fle Nemter | B30 158 S320 219 |FeeSpace| BT Free Space a
! mil
Rexd =

Large Directories: B Trees

Search for Hash (foo.txt) = 0x30

Root
fefre} 240 | 510 @ 730 ©B9BO
Cleld Poirer
Chid . . . Child
petore | 58 121 180 | 240 740 | 841 930 | 980
ChidPaimber} ¢ | : | = | -} 7"
Leat ¢ b AN Leat
Hash | 15 30 44 58
Eatry Pointee Pl] - R, S
Hash Nemzer 30
Name) . foo. txt | music work | code bin test
Fie Nember | B30 158 an 320 219 3 014 324

Large Directories: Layout

File Containing Directory

Marre music | work Root | Chid | Leaf | Leaf | Chid

Fiw Npmber | 320 | 218

Drechary Endrias B+Tre Nodes

