
File Systems



Main Points

• File layout
• Directory layout



File System Design Constraints
• For small files:
– Small blocks for storage efficiency
– Files used together should be stored together

• For large files:
– Contiguous allocation for sequential access
– Efficient lookup for random access

• May not know at file creation
– Whether file will become small or large



File System Design

• Data structures
– Directories: file name -> file metadata
• Store directories as files

– File metadata: how to find file data blocks
– Free map: list of free disk blocks

• How do we organize these data structures?
– Device has non-uniform performance



Design Challenges
• Index structure
– How do we locate the blocks of a file?

• Index granularity
– What block size do we use?

• Free space
– How do we find unused blocks on disk?

• Locality
– How do we preserve spatial locality?

• Reliability
– What if machine crashes in middle of a file system op?



File System Design Options
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Named Data in a File System



Microsoft File Allocation Table (FAT)

• Linked list index structure
– Simple, easy to implement
– Still widely used (e.g., thumb drives)

• File table:
– Linear map of all blocks on disk
– Each file a linked list of blocks



FAT



FAT
• Pros:
– Easy to find free block
– Easy to append to a file
– Easy to delete a file

• Cons:
– Small file access is slow
– Random access is very slow
– Fragmentation

• File blocks for a given file may be scattered
• Files in the same directory may be scattered
• Problem becomes worse as disk is used



Berkeley UNIX FFS (Fast File System)

• inode table
– (very roughly) Analogous to FAT table

• inode
– Metadata
• File owner, access permissions, access times, …

– Set of 12 data pointers
– With 4KB blocks => max size of 48KB files



FFS inode

• Metadata
– File owner, access permissions, access times, …

• Set of 12 data pointers
– With 4KB blocks => max size of 48KB files

• Indirect block pointer
– pointer to disk block of data pointers

• Indirect block: 1K data blocks => 4MB (+48KB)



FFS inode
• Metadata
– File owner, access permissions, access times, …

• Set of 12 data pointers
– With 4KB blocks => max size of 48KB

• Indirect block pointer
– pointer to disk block of data pointers
– 4KB block size => 1K data blocks => 4MB

• Doubly indirect block pointer
– Doubly indirect block => 1K indirect blocks
– 4GB (+ 4MB + 48KB)



FFS inode
• Metadata
– File owner, access permissions, access times, …

• Set of 12 data pointers
– With 4KB blocks => max size of 48KB

• Indirect block pointer
– pointer to disk block of data pointers
– 4KB block size => 1K data blocks => 4MB

• Doubly indirect block pointer
– Doubly indirect block => 1K indirect blocks
– 4GB (+ 4MB + 48KB)

• Triply indirect block pointer
– Triply indirect block => 1K doubly indirect blocks
– 4TB (+ 4GB + 4MB + 48KB)





FFS Asymmetric Tree

• Small files: shallow tree
– Efficient storage for small files

• Large files: deep tree
– Efficient lookup for random access in large files

• Sparse files: only fill pointers if needed



FFS Locality

• Block group allocation
– Block group is a set of nearby cylinders
– Files in same directory located in same group
– Subdirectories located in different block groups

• inode table spread throughout disk
– inodes, bitmap near file blocks

• First fit allocation
– Small files fragmented, large files contiguous 





FFS First Fit Block Allocation



FFS First Fit Block Allocation



FFS First Fit Block Allocation



FFS
• Pros
– Efficient storage for both small and large files
– Locality for both small and large files
– Locality for metadata and data

• Cons
– Inefficient for tiny files (a 1 byte file requires both an 

inode and a data block)
– Inefficient encoding when file is mostly contiguous on 

disk (no equivalent to superpages)
– Need to reserve 10-20% of free space to prevent 

fragmentation



NTFS

• Master File Table
– Flexible 1KB storage for metadata and data

• Extents
– Block pointers cover runs of blocks
– Similar approach in linux (ext4)
– File create can provide hint as to size of file

• Journalling for reliability
– Next chapter



NTFS Small File



NTFS Medium-Sized File



NTFS Indirect Block





Named Data in a File System



Directories Are Files



Recursive Filename Lookup



Directory Layout

Directory stored as a file
Linear search to find filename (small directories)



Large Directories: B Trees



Large Directories: Layout


